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AN ANALYTIC FORM FOR THE INTERRESPONSE TIME ANALYSIS OF SHULL, GAYNOR, AND
GRIMES WITH APPLICATIONS AND EXTENSIONS
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Shull, Gaynor and Grimes advanced a model for interresponse time distribution using probabilistic
cycling between a higher-rate and a lower-rate response process. Both response processes are assumed
to be random in time with a constant rate. The cycling between the two processes is assumed to have a
constant transition probability that is independent of bout length. This report develops an analytic form
of the model which has a natural parametrization for a higher-rate within-bout responding and a lower-
rate visit-initiation responding. The analytic form provides a convenient basis for both a nonlinear least-
squares data reduction technique to estimate the model’s parameters and Monte Carlo simulations of
the model. In addition, the analytic formulation is extended to both a refractory period for the rats’
behavior and, separately, the strongly-banded behavior seen with pigeons.
Key words: IRT distributions, Monte Carlo simulation, pigeon IRT banding

Shull, Gaynor and Grimes (2001) used a
state diagram representation for their elegant
model for interresponse time (IRT) distribu-
tions. The core structure in their model is the
assertion that the measured response popula-
tion is generated by transitions between two
separate and independent source populations:

® a long IRT component associated with the
visit initiation time between bouts of oper-
ant behavior,

® a short IRT component associated with
bouts of operant behavior.

While the state diagram’s transitions circum-
scribe how these two populations may contrib-
ute, definitions of the two populations are also
required. Shull et al. (2001) addressed this
issue by assuming that both are random
processes with uniform probability densities
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in time. Their article also dealt with two
methodical matters that have more to do with
reducing the experiment’s data than the
model itself. First, the authors used a log-
survivor plot to compactly present the IRT
population. Perhaps because a log-survivor
plot highlights the IRT component forms
posited by Shull et al. so clearly, its use has
become convolved with the model itself. In
fact, a log-survivor analysis is not required by
their model and conditions do exist where its
use can obscure the behavior processes. In
addition to finding a particularly good visual-
ization technique, they combined their model
with their data collection hardware as a
technique to extract these probability distribu-
tion parameters from an obtained IRT distri-
bution. With the combination of their model
and a well suited data reduction technique,
Shull et al. then compared measured IRT
distribution of rats against the model’s pre-
dicted form and found reasonable agreement.
Further, they determined some of the exper-
imental variables that control the two compo-
nents.

In subsequent articles Shull and his co-
authors explored both a broader set of
experimental conditions where the model is
applicable and the conditions governing the
probability distribution parameters. Shull,
Gaynor, and Grimes (2002) studied relative
resistance to change of the response distribu-
tion components. Shull and Grimes (2003)
gave the effects of changing the response
required of the rats from the original nose
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poke to a lever press. By and large, the lever
press behavior had the same characteristics as
nose poking, with the differences confined to
quantitative changes. For example, a lower
rate for the within-bout responding resulted in
a more rounded transition in the IRT distri-
butions seen with lever pressing when com-
pared to nose poking. Shull, Grimes, and
Bennett (2004) presented a more detailed
study of how the individual component pa-
rameters are affected in steady-state by overall
rate on a variable-interval (VI) schedule,
changes in the VI schedule, and the inclusion
of a small variable-ratio requirement. The
article also suggested a way to tie the within-
bout and visit-initiation responding to time
allocation matching. Shull (2004) measured
the control deprivation level has upon the
individual component parameters — depriva-
tion primarily affects the visit-initiation rate.
Starting with Shull and Grimes (2003), the
probability distribution parameters estimation
used weighted non-linear least squares imple-
mented in SigmaPlot. This refined data
analysis stemmed from a related Excel optimi-
zation application developed by Killeen
(2003). Killeen’s Excel application, itself,
followed from a modified version of Shull et
al’s state diagram (Killeen, Hall, Reilly, &
Kettle; 2002).

At least one alternative representation of the
Shull, Gaynor and Grimes (2001) model is
possible. This report reframes the Shull et al.
model by expressing it in an analytic form. It is
important to note that use of a state diagram
provides a sufficient description in a heuristic
sense, but it can be unwieldy in some
circumstances. An analytic form lifts some
limitations that are not inherent to the model.
Unlike its initial definition via a narrative and a
state diagram, or Killeen et al.’s (2002) closely
related representation via machines, an ana-
lytic representation simplifies study of the
model’s characteristics. For example, issues
of stability and precision that become impor-
tant during data reduction can be resolved
with reasonable clarity. Further, extensions of
Shull et al.’s model to other types of organisms
and behavior are far simpler once an analytic
form is defined. Additionally, specific substitu-
tions for individual elements have a natural
setting.

The present report opens with the develop-
ment of an analytic form of the Shull et al.
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model. First, we introduce the probability
density functions that govern the model’s
components and the probabilistic cycling.
These analytic expressions are then combined
to yield the overall IRT probability density
function. The second section of the report
applies the resulting analytic expressions to
the data reduction process. We set up the
estimation of the model’s parameters from
IRT data as a non-linear least squares problem.
We also consider the limitation imposed on
data reduction processing by the sample size,
using a Monte Carlo simulation. In the third
section we extend Shull et al.’s model to
include a refractory period or dead-time
correction. In the fourth section, we consider
replacing the uniform-in-time high rate pro-
cess that has been used to describe the rats’
nose-poking and lever pressing with the
strongly-banded high rate process present in
pigeon key pecks. This is done with reference
to the experiments by Bowers, Zimmermann,
and Palya (2003) and Bowers, Hill, and Palya
(2008). We explore some aspects of the more
complex behavioral repertoire of the pigeons
using a second Monte Carlo simulation. This
second Monte Carlo preserves the structure of
the first, but components are modified to
describe the pigeons. The article closes with a
brief summary discussion.

ANALYTIC FORM OF THE SHULL,
GAYNOR, AND GRIMES IRT MODEL

Shull, Gaynor, and Grimes (2001) presented
their model of IRT distributions in an implicit
version by employing the state diagram in their
Figure 2 along with its caption and parts of the
narrative descriptions in the introduction and
their hardware simulation on pp. 249-250. It is
relatively straightforward to put their model in
an analytic form. Though our end point will be
a set of equations, the starting point for this
article’s development is Shull et al.’s state
diagram, shown in Figure 1. It is important to
note at the outset that this state diagram
implies a specific and very local description of
how the supported behavior can unfold in
time. By itself, however, the state diagram does
not have an inherent time scale or cadence.
The time scale is determined by the transition
probabilities one chooses to employ. In other
words, Shull et al.’s model has its structural
backbone fixed by the state diagram, yet it still
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Fig. 1. A modified version of Shull et al.’s (2001)
state diagram. The dashed arrow is present in the original,
but is replaced here by transition 1, the solid arrow from
the disengaged state to the response state. Transitions 1
and 2 have a deterministic endpoint at the response state,
but are probabilistic in transition interval. Hence, the
transition probabilities, p,(f) and p,(¢), are written as
functions of time. In contrast, transitions 3 and 4 that
occur after a response are probabilistic only in end state,
either remaining in the visit state or ending the bout of
responses by a transition to the disengaged state. Hence,
the probability, p, of disengaging after each response is
discrete number.

derives considerable flexibility from the tran-
sition probabilities. As a matter of taxonomy;, it
seems fair to claim that so long as Figure 1 is
preserved, one is using a Shull et al. model.
The two extensions covered in later sections of
this article are of this form - Figure 1 is
preserved, but the transition probabilities
differ from those originally used by Shull et
al. Note that we have made one minor
structural change in the state diagram. The
original version of Figure 1 had a transition
from the disengaged state to the visit state,
shown as the dashed arrow. As a practical
matter, the transition from the disengaged
state is signaled in the data by a response.
Consequently, our version of the state diagram
has a direct transition, shown as a solid arrow,
from the disengaged state to the response
state. Only this transition is experimentally
observable, the dashed-arrow transition is not.

In contrast to the state diagram’s explicit
form, Shull et al. (2001) defined the transi-
tions between states in terms of their proper-
ties. To refine the definition of these transi-
tions it is useful to consider how the model’s
transitions yield response sequences in terms
of visit cycles. A short sample of the response
sequence that follows from the Figure 1 state
diagram is shown in Figure 2. Each cycle of the
model contains an initial visit initiation period
followed by a bout of n responses. Then the
organism switches back to the disengaged state
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and the next cycle begins. Shull et al
presuppose that the visitinitiation period,
the number of responses within a bout, and
the within-bout IRTs all are random variables.
As we noted above, a visit-initiation period
ends with a response. Hence, we will drop the
distinction between a visit-initiation period
and a within-bout IRT and refer to the former
as a visit-initiation IRT. To formalize slightly,
the Shull, et al. model for the supported
behavior yields an IRT sequence that is the
result of probabilistic cycling between distinct
low-rate and high-rate random processes. The
visit-initiation intervals from the low-rate pro-
cess and the within-bout response intervals
from the high-rate process constitute the
complete population that make up the IRT
distribution.

All that remains to reach an analytic form
for Shull et al.’s (2001) model is the selection
of some appropriate probability densities
followed by a bit of assembly. Both low-rate
visit-initiation and high-rate within-bout re-
sponse processes shown by transitions 1 and
2 in Figure 1 have convenient descriptions in
terms of time-dependent continuous probabil-
ity densities. The probabilistic cycling between
these two processes shown by transitions 3 and
4 in Figure 1, however, is defined by the time-
independent disengagement probability p,.
Hence, the model’s time scale is set entirely
by transitions 1 and 2. It will prove useful to
develop a discrete probability density for the
number of responses per visit (cf. Equation 6)
from the disengagement probability p, First,
though, we will develop expressions for the
continuous probability densities of the two
response processes.

Shull et al. (2001), and later Killeen et al.
(2002), specified the visit-initiation and within-
bout response intervals by introducing an
ancillary very high rate discrete time base. By
sampling a discrete probability against a fixed
threshold far faster than the average within-
bout IRT or visit-initiation IRT, Shull et al.
effectively asserted that, for the organism and
behavior in their studies, both the visit
initiation and within-bout responses are ran-
domly distributed in time at a constant average
rate. In formal terminology, they were assert-
ing that both the long and short IRT compo-
nents are Poisson processes, which can be
conveniently described by continuous proba-
bility densities. In fact, taking the limit as the
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j+2

j+3 i’

Fig. 2. A few cycles’ response times about the ]‘—h bout for Shull et al.’s (2001) model. The cycles are labeled below
and run continuously. The bouts are marked off with dashed lines above. The j — 1 bout has 3 responses, the jbout has 2

response, etc.

ancillary discrete time base interval approach-
es zero is a standard technique to derive the
inter-event spacing for a Poisson process.
Furthermore, it is simpler to extend Shull et
al.’s model with continuous probability densi-
ties, and that is the approach adopted here.

The separations between events governed by
a Poisson process have an exponential distri-
bution (Enge, 1966; also this report’s web-
appendix[see Author Note]). The appropriate
Poisson probability density functions for the
visit-initiation and within-bout IRTs are both
given in the standard form as:

1
_ it/
pi) = —e M)
and
() = e @)
p'r - T,e ’

which differ only by the time scale parameters
for visitinitiation responding, 7,, and within-
bout responding, t,. A clear experimental
finding by Shull et al. (2001) is that for rats’
nose pokes or lever presses 7, > 1,. Note that the
assumption of constantrate random distribu-
tions in time for both processes is not required
by the cycling illustrated in Figure 1 — it is a
second, independent, element of Shull et al.’s
model. Equations 1 and 2 give an explicit
form for this second element of the Shull et al.
model.

The number of responses within a bout is
determined in Shull et al.’s (2001) model by
the probability p, of ending a bout after a
response. This is the point where a discrete
probability density enters the model. The
probabilities for a bout to end with one, two,
or three responses are

pe(1) = pa, (3)

p.(2) = (1 — pa)pa, (4)
and
pe(3) = (1 = pa)*pus (5)

respectively. In general, the discrete probabil-
ity density function for a given cycle to end
after n responses is

pe(n) = (1 = pa)" ' pu. (6)

Equation 6, when combined with Equations 1
and 2, provides the analytic form of the Shull,
et al. model. With these three expressions, the
model can be used to describe the local (or
fine) structure of the response dynamics. This
local form of the Shull et al. model has two
immediate uses. First, the equations are the
basis for the Monte Carlo simulation described
in Appendix A. Second, one can use these
equations to calculate the more molar, time-
averaged property used by Shull and his co-
workers: the IRT distribution.

(One thing the Shull et al. (2001) model does
not include is a relationship to the reinforce-
ment schedule which is supporting the respond-
ing. As discussed in both the original Shull et al.
(2001) article and subsequently by Shull and
Grimes (2003), ascertaining the dependence of
T, T, and p,; upon characteristics of the
reinforcement conditions is an experimental
question.)

The overall IRT probability density function
follows fairly promptly by combining Equa-
tions 1, 2, and 6. It is a matter of summing
contributions from the two IRT populations
weighted by their relative probabilities. The
average number of responses in a single cycle
of the model is given by

n=3"np(n), (7)
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Using the standard series expansion
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(10)

(Peirce, 1929) which is valid for 0 = x < 1,
simplifies Equation 9 to

_ 1 1 1
=g =g =

2 T Pde T

[1 = (1 = pa)] v P

Since all bouts are preceded with a single visit-

initiation IRT, the fraction of the responses
due to visit initiation is

1 —
7 - Pd-

(11)

F, = (12)
The fraction that are not due to a visit
initiation is therefore

F,=1—F,=1—p, (13)

The overall IRT probability distribution is
independent of the order of the IRT sequence
present in Figure 2. Consequently, the net
probability density of the IRTs is a weighted
sum of p,(¢) and p,(#) which we write as

pre(t) = Epo(0) + Ep (0. (14)
Equation 14 gives the net probability density
of the IRTs as the sum of the two contributing
densities, weighted by the probability that a
particular IRT is chosen from either of them.
By itself, Equation 14 is a simple assertion of a
two-population-based IRT model; it is less well
defined than Shull et al.’s (2001) model as
shown in Figure 1. In contrast, the state
diagram, the asserted Poisson distribution for
the visit-initiation and within-bout IRTs, and
the probabilistic cycling of Shull et al.’s model
lead to the precise expressions for p,(9), p.(t),
7, and a specific form
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pIRT(t; Ty, Try f’d) = @ e*l/rv
ﬂ (15)
+ ﬂe—t/r,

T

upon substitution of the right sides of Equa-
tions 1, 2, 12, and 13. The augmentation of
the argument list to include 7,, 7,, and p, as
one moves from Equation 14 to Equation 15
reflects the form of the model. The semicolon
is a common notation to split the argument list
into the single variable for the IRT probability
density axis, ¢ and a set of three control
parameters. For steady-state behavior after
acquisition dynamics have faded, one expects
T4 Ty, and p, to have reached constant values.
In other words, the Shull, et al. model
generates the family of IRT distributions that
satisfy Equation 15, while the t,, 7,, and py
value set selects a member distribution appli-
cable in a given situation.

It is of importance that Equation 15 is a
probability density function, not a probability.
As such, Equation 15 gives the probability
density for an IRT to take an exact value.
However, an exact outcome for a continuous
random variable such as an IRT value only
occurs with a vanishingly small probability. One
obtains a finite probability by considering a
measurable range of IRT values. Formally one
integrates pirr(4 T4 T, pa) Over the range as

Prr(t1,t0; T, Trspa)
l (16)
= J PIRT(ﬁ Tvafrapd)dta

[}

= e_tl/fv _ e—tg/‘[,y
! | (17)
+ (- Pd)[e_tl/r' - 8_52/"]

to get the probability of an IRT within that
range.

Figure 3 shows some examples of Equa-
tion 15’s IRT probability density function.
One consequence of using a probability
density is that the curve for prr in Figure 3
with 7, = 10, 7, = 0.5, and p, = 0.2 exceeds 1.0
for 1 < 0.2375. When integrated over the small
interval between 0 and 0.2375, the resulting
probability is less than 1. A more important
aspect of developing Shull et al’s (2001)
model in terms of probability densities con-
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Fig. 3. pirr(4 7y, T,, po) with fixed values of 7, = 10.0 s and p, = 0.2 and varying 7, = 0.5, 1.0, and, 2.0 s (top panel).
pirr (6 T, Ty, pa) with fixed values of 7, = 10.0 s and 7, = 1.0 s and varying p, = 0.1, 0.2, and, 0.4 (bottom panel).

cerns testing it against experimental observa-
tions. Any comparison against real data re-
quires integrating over an appropriate range
of prr values and Equation 17 will be used
later for this purpose. Shull et al. used a
second such integral over pry: the survivor
fraction. The conversion of an IRT probability
density function to survivor fraction is given by
the expression:

surVIRT(t; Tvafraibd) (18)

= J PRt (¢ T0,Tpa)dl

t

= pae” "+ (1 — p)e . (19)
Figure 4 shows Equation 19 plotted on semilog
axes (i.e. a log-survivor plot) for the same
parameters used to generate Figure 3. Figure 4
recovers the two-limbed, or broken stick, form
shown in Shull et al.’s Figure 3 (2001), though
the continuous evaluation possible with an
analytic expression yields smoother curves.
For completeness, also shown in Figure 4 are
extrapolations back to zero time of the visit-
initiation populations. As follows from the first
term in Equation 19, p; e~ "/, extrapolating an
intercept of survigr (% 7y, T,, pg) from the IRTs

that satisfy ¢ > 7, back to zero gives p,. This
formally recovers the other result given in Shull
et al.’s Figure 3 — extrapolating to ¢ = 0 in log-
survivor coordinates yields p,. Finally, reaching
Equation 19 from the state diagram and Equa-
tions 1, 2, and 6 is the constructive proof that
Shull et al’s Equation 2 (2003) and the
equivalent expression in Killeen’s Excel spread-
sheet (2003) are the correct form required by
the model.

To foreshadow the type of extensions to be
considered later, the model developed by Shull
and his colleagues can be made more flexible by
allowing changes in the definitions of p,(%),
p.(1), or p, The extension of this model to
pigeons relaxes the constraint of a common
form for Equations 1 and 2 by using two distinct
probability density functions for p,(¢) and p,(?).
Similarly, a different model of how a bout ends
would yield a different computation for F,
changing the forms of Equations 12 and 15.
There are a myriad of behaviorally reasonable
alternative models. As one example, some
organisms may simply never exceed a maximum
number of responses within a bout no matter
how rich the schedule. This would truncate the
series in Equation 8, somewhat reduce the value
of 7, and change the extrapolated intercepts in
Figure 4. As a second example, p, could be
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Fig. 4. Log-survivor plot of survigr (4 74, 7,, pg) with fixed values of 7, = 10.0 s and p, = 0.2 and varying 7, = 0.5, 1.0,

and, 2.0 s (top panel). Log-survivor plot of survigr (4 7., 7., p4) with fixed values of 7, = 10.0 s and 7, = 1.0 s and varying p,

initiation populations.

made an increasing function of bout time which
would change the detailed dynamics of the
response sequences allowed.

APPLICATIONS OF THE ANALYTIC FORM

The immediate applications for Equation 15,
along with the expressions leading to it and
some derived from it, arise when comparing
experimental data to the Shull et al. (2001)
model. Either Equations 17 or 19 can serve as
the basis for robust estimations of t,, 7,, and p,
from experimental data. For example, Killeen’s
(2003) Excel spreadsheet is based on Equa-
tion 19. We will consider both forms. A some-
what more involved application is using Equa-
tions 1, 2, and 6 to write a Monte Carlo simula-
tion of Shull et al.’s model. While such a simu-
lation can be used in a variety of ways, we use it
here to examine how the precision of param-
eter estimation depends upon data set size.

Non-linear Least Squares Estimates for t,, t,, and
pa from data

Estimation of t,, 7,, and p, from experimen-
tal data is a problem in non-linear least squares
estimation (Killeen, 2003; Shull & Grimes,
2003). In our case, we choose to define the

0.1, 0.2, and, 0.4 (bottom panel). Also shown in both panels are extrapolations to ¢ = 0 of the visit-

residuals required for such an estimation in
two ways: first with respect to the IRT pro-
bability density function prr via Equation 17,
and second, with respect to the survivor
fraction survigr given by Equation 19. It will
turn out not to matter which residual is used.
We also depart from Killeen (2003) by
weighting the least squares estimation with
the residual variance and, to a lesser extent,
from Shull and Grimes (2003) by using a
weighting specifically derived for the least
squares optimization in use.

To work from data, as opposed to exploring
the properties of an analytic form (e.g.
Figures 3 and 4), first requires a bit of
preliminary processing. The IRT data are
converted to a histogram where Ngr(t) is
the number of IRTs in a bin about ¢;. Next the
data are converted into a normalized histo-
gram of N bins as,

Nirt(8)

N ’

> Nirr(t)

i=1

(20)

nrt(4)

An important property of Poisson-distributed
data is that the uncertainty of Mgrr(¢;) for the
bin about ¢ is
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Nrr(4) (21)

(Enge, 1966). Consequently, the uncertainty
in nry(4;) is approximately
Nirr(#)
GanTi = Ni, (22)
>~ Nirr(#)

i=1

ONRgr, =

since relative uncertainty in total number of

IRTs, Z‘,V:] Nrt(t;), will be much smaller

than the uncertainty in an individual bin. The
analog to Equation 20 for the normalized
survivor fraction when working with experi-
mental data is the ratio of two sums over the
histogram:

N
ZNIRT(tj)

_ =i

survipr () = ——,

< (23)
Z:l Nirt (%)

where the " superscript denotes a survivor frac-
tion computed from data. Note that while
Equation 18 is an analytic equivalent of Equa-
tion 23, it does not require the normalization
present in Equation 23 because pirr(4 T, T,
pa) was constructed to have a normalization of
1 from the outset. The expression for the
uncertainty in survigr(Z;) is

1’\'
ZAMRT(tj)
j=i

N
> Nirt (%)
i=1

(24)
/()
+ 1/<iN1 NIRTUi))

(Bevington and Robinson, 2002, pp. 39-45).
Equation 24 is somewhat more involved than
Equation 22 since there are bins at low values
of ¢ where the sum in the numerator of
Equation 23 will be of comparable size to the
sum in the denominator.

One reduced chi-square expression appro-
priate for a weighted least-squares estimate of

Osurvigr, —

X
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7, T, and p, using the Equation 17 integral
over the probability density is

£ = Y el
-n i=1 U”IRT,v (25)
- PIRT(tiati-!-];Tvsr'rapd))Qa
1 K1
= (nrT (%)
N — S;O—flmn
 palet — bl (26)

_ . 9
— (1= o) )
where, in this case, v = N — 3 is the degrees of
freedom and oim is the variance associated

with the lf IRT residual nIRT(t,;) - PIRT(tia i 15
Ty Trs Pa), as given by Equation 22. Note that
the 1 / G%mqi factor is the weighting. Press,
Flannery, Teukolsky, and Vetterling (1996)
provide an implementation in both C and
FORTRAN of the Levenberg-Marquardt algo-
rithm, mrqmin, which will compute the least-
squares best estimates for 7, 71, and p,
Including a weighting factor like that given
by Equation 22 is particularly important when
the uncertainty varies significantly in magni-
tude. See Press et al.’s discussion on this point.
Note that Shull et al’s (2001) SigmaPlot
routine uses the inverse weighting option to
generate a similar effect within their data
reduction. Commercial data analysis packages
(e.g. IDL or Mathlab) have Levenberg-Mar-
quardt routines based on Press et al. that are
immediately applicable to Equation 26. The
partial derivatives required in using the Leven-
berg-Marquardt algorithm are given in Appen-
dix B. An alternative reduced chi-square ex-
pression for a weighted least-squares estimate
based on the survivor fraction is

A"_N—nilcﬂ

(survirr ()

—1 Zsurvirr, (27)
— survirr (4 Tv,fr,l?d))Q,
1 N 1 -
= (suerT ( t,j)
N — 3i:ZIGZUTVIRT,» (28)
— pae” " — (1 — pd)eft/f,){
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Fig. 5. IRT data from Shull et al.’s (2004) Rat CI plotted as a normalized histogram with uncertainty brackets from

Equation 22. The bottom panel shows subregion of the top panel within the box. The fit against Prr (Equations 17 and
26) is shown as a dashed curve. The fit against survivor fraction (Equations 19 and 28) is shown as a dotted curve. The
survivor fraction fit with refractory period (Equations 38 and 39) is shown by the dash-dot curve.

The degrees of freedom are still given by v = N

. .t .
— 3. The variance 2, of the i survivor
IRT;

residual, SUrVirRT(4) — SUIVIRT(£; TosTropa) 1S
given by Equation 24. As with Equation 26,

the least-squares best estimates for 7,, 7,, and
pacan be found with the Levenberg-Marquardt
algorithm and the required partial derivatives
are also given in Appendix B.
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Table 1
Fit parameters for Shull e/ al’s Rat C1.

Ty T, pa 0

4.69 0.266 0.244
4.22 0.257 0.250

Prgy fit
survivor fraction fit
refractory survivor fraction

fit 4.10 0.206 0.252 0.0539

Figure 5 shows an IRT data set for Rat C1 on
a VI 60-s schedule (Shull, Grimes, & Bennett,
2004) after the data have been processed into
a normalized histogram using Equation 20.
Also shown are the uncertainty brackets for
each histogram bin given by Equation 22. As
the IRTs lengthen, the number of IRTs within
a bin drops and, consequently, the relative
uncertainty increases. It is this systematic
variation in uncertainty that makes a weighted
fit important. The dashed curve in Figure 5 is
a Levenberg-Marquardt fit generated with
Equation 26. The survivor fraction fit with
Equation 28 estimates for t,, 7,, and p, result
in the dotted curve in Figure 5. There is no
obvious reason to prefer one fit over the other
as both are faithful representations of the data
in Figure 5. Table 1 gives the fit parameters
for both the Prr and survivor fraction fits. We
will address the modest difference in 7, for the
two fits below using the Monte Carlo simula-
tion.

The use of semilog coordinates in Figure 5,
as well as in Figures 3 and 4, is a good way to
present the results. The efficacy of semilog
coordinates for IRT data with exponential
distributions (e.g. governed by Equation 15)
occurs because an exponential becomes a
straight line in semi-log coordinates. Since
Shull et al’s (2001) model has a pair of
exponentials, one can, in many cases, easily
discriminate between the within-bout and visit-
initiation populations (e.g. in Figures 3, 4, and
5). Further, by its nature, it is usually easier to
visually detect systematic departures from a
straight line than from a curve. Consequently,
one can efficiently inspect residuals from a
number of experimental subjects as an initial
check for a common and systematic departure
from the model’s predictions. In the present
case with data from only the single subject, use
of semilog coordinates suggests that for the
shortest few IRT bins, as isolated in the bottom
panel of Figure 5, both dashed and dotted fits
do depart somewhat from the measured data.

ROBERT KESSEL and ROBERT L. LUCKE

Despite the obvious utility of semilog and/or
log-survivor coordinates, such plots, however,
are not inherently part of Shull et al’s model.
The model is the Figure 1 state diagram,
Equations 1, 2, and 6, and, if one is interested
in IRT distributions, Equation 15. In fact, once
one goes over to a full non-linear least-squares
approach, the use of semi-log coordinates is
not even part of the data reduction. Both
Equations 26 and 28 are fit without using a
semilog transformation. One can improve
convergence of Equation 26’s fit somewhat
by using a variable, log-based, bin width, but it
is not required for Figure 5.

Killeen’s (2003) Excel application uses a
different approach to estimate t,, 7,, and p,.
Rather than process the IRT set, {IRT}, into a
histogram, they are sorted into increasing
order with duplicates retained. As a notation
for the sorted IRT set, we will use {IRT}"}.
Retaining duplicates is of significance for
experimental data — finite timing resolution
results in duplicates in Rat C1’s IRT distribu-
tion. Killeen then set up an unweighted least-
squares optimization problem for the entire
sorted IRT list using the residual sum-squared
expression

sum _frac IRTS(’”]

NMZ

(29)
- Pde_t/r” — (1= pa)e /)",

The survivor fraction for the i2 sorted IRT is
given by

N —(i—1)

suro_frac[IRT"| = N

(30)

For duplicates within {IRT?OH} Killeen set all
their survivor fraction values to the value from
the last ordinal position occupied by the
duplicates. Equation 29’s sum is then mini-
mized with Excel’s Solver which, in turn,
employs a Generalized Reduced Gradient
(GRG2) nonlinear optimization routine. As
Excel’s GRG2 routine is a proprietary code,
the effect on the estimates for 7, 7,, and p, by
the much greater prevalence of short IRT
values or the duplicate entries is unknown.

Monte Carlo Tests of Sample Size Dependence

In the limit of an infinitely large data set and
infinitely fine binning, mgrr(4) goes to pirr(t;
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T4 Trs Pa). This leaves open the question of how
quickly a finite data set will approach the limit.
One method to gain such convergence infor-
mation is to build a Monte Carlo simulation.
Such a software emulation makes exploration
of the model’s sample-size dependence practi-
cable. Equations 1, 2, and 6 are a convenient
basis for a software Monte Carlo simulation of
Shull et al.’s (2001) model. The Monte Carlo’s
sets of random numbers distributed according
to Equations 1, 2, and 6 are generated from
uniformly-distributed, floating-point, pseudo-
random numbers in the range 0 < » < 1.0 by
a remapping that equates the cumulative
probabilities. The details of the Monte Carlo
and the analytic definitions for the remappings
are given in Appendix A.

Figure 6 illustrates the convergence of a log-
survivor plot as a function of the number of
simulation cycles used. As might be expected,
the curves generated from the histograms with
Equation 23 become smoother as more simu-
lation cycles are included. The curves also
extend to greater multiples of 7, as the
comparatively rarer longer visit-initiation IRTs
are generated by the simulation. Note that at
the longer IRT values, the simulations for 50
and 500 cycles show a similar deficit in IRT
number as is seen in Shull et al.’s results for
steady-state behavior. Also note that the Monte
Carlos’ log-survivor curves are smoother to-
wards the short IRT end. This reduction in the
curves’ fluctuations is the same effect as the
narrowing of the uncertainty brackets at smaller

fraction plots for 50, 500, 5,000 and 50,000 simulation cycles with 7, = 10.0's, 7, = 0.5 s, and

IRT values noted for Figure 5. That the short
IRT end of the distribution is better deter-
mined has a quantitative effect on the precision
with which we can estimate 1, 7,, and p,.

To quantify the convergence, we use the
fact that the Monte Carlo output has exactly
the same form as an experimental IRT data
set. Consequently, the same Levenberg-Mar-
quardt fit routines used for Figure 5 are also
applicable to Monte Carlo results. With
appropriate control of the random number
routine’s seed values, one can generate
multiple independent samples with the same
number of simulation cycles. Figure 7 shows
the convergence of 7,, 7,, and p, as a function
of the number of simulation cycles when
fitting against the probability density. Fig-
ure 8 shows the corresponding convergence
results for a survivor fraction fit. For either fit
procedure, the fastest convergence in terms
of relative uncertainty is in 7,, followed fairly
closely by p;, and then noticeably lagged by
7,. Between the two techniques, the survivor
fraction has a somewhat faster convergence,
particularly for 7,’s convergence. The differ-
ing rates of parameter convergence is of
particular relevance to the behavioral mo-
mentum results (Shull, Gaynor, and Grimes;
2002). Even using group means, it is not clear
that the sample sizes are large enough. Based
on convergence seen Figures 7 and 8, these
smaller IRT populations should yield 7, and
pa estimates good to =2%, but the 7, are, at
best, =10%.
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EXTENDING THE MODEL TO INCLUDE A
REFRACTORY PERIOD

For 500 visit-cycle Monte Carlo runs with 7, =
10.0 s, and 7, = 0.5 s, and p,; = 0.2, the shortest
IRT out of the roughtly 2,500 generated is
approximately 0.0002 s (or 0.2 ms). The short-
est IRT in Killeen’s (2003) Excel spreadsheet
example is also about 0.2 ms. Clearly, such IRT
values are multiple hundreds of times faster
than physically possible. In the Shull, Grimes,
and Bennett (2004) rat data in Figure 5 the
shortest IRT is 70 ms. Consequently, a more
behaviorally reasonable model would cut off
the short end the IRT distribution by requiring
a refractory, or minimum, period between
responses. The changes needed to extend the
basic Shull et al. (2001) model to accommodate
a refractory cutoff are minimal.

Using Killeen’s (2002) notation of 6 for this
refractory cut-off, Equations 1 and 2 change

1
plt) = Selt=mew — 8 (31)
TU
and
pt) = ~i-0meE — 5 (32)

Tr

The O (¢ — ) is the step function given by

@(t_5)2{0 1 <0

. 33
1 t>0 (33)

The probabilistic switching is unchanged, so
Equations 12, 13, and 14 remain valid. Conse-
quently, the overall IRT probability density
function when one includes a refractory period is

Pt (6 Tortrpd) = LLem0 =901 — 5)

v

V= pa o) (34)

Tr

Ot — 9).

_|_

which follows immediately upon substitution of
the right sides of Equations 31, 32, 12, and 13

into Equation 14. Equation 34 integrates
promptly to
PIRT('«‘]JZTU,DJM,&) (35)

lo
= J PIRT (4 TosTrspas0) dt

]
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0 tlo < O
Pd [l — 67(12 - 5)/1'1/]
+ (1 — pa)
— X [1 — e _5)/T’] h <0< b
Pl[ h—9)/t, __ 67(& — 5)/1:,,] (36)
(1= o) 0
e = 9] 5 < .ty

as the analog of Equation 17. Similarly, the
survivor fraction with a refractory period follows
immediately as

SUrvirT ( [ Tm‘fnﬁd;é) =

(37)
J PRT (05107, pas0) dt

!
1 1 <9
_ pae” (t —9)/t,

+ (1= pa)e 0 5 <y

(38)

The reduced chi-square expression for a
weighted least-squares estimate using the
Equation 38 survivor fraction is

1 1
X%:N—‘l,\z 2

SUrvViRT
surleT(Z,) <o B

(surleT( ) — 1)

1
DI

g
—  Usurv
survipr(4;) =9 IRT;

(STJE/IRT(E‘) — pae

(1 _ f)d) to)/f,)2:|,

Note the change in degrees of freedom to v =
N — 4 with the addition of the 0 parameter.
Inclusion of a refractory period yields the
dashed-dot fit shown in Figure 5. The fit does
more closely follow the measured dlstrlbutlon
for the shortest IRT values and the z2
improves. However, the F, test of an additional
term  (Bevington and Robinson, 2002,
pp- 207-208) yields a value of 0.277 for the
IRT distribution which is well short of the 3.98
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cutoff value at v = 71 and the 95% confidence
limit required for the refractory period to
significantly improve the fit. This is reasonable
since Rat Cl’s refractory period appears to
affect only the shortest and perhaps second
shortest bin in the distribution.

EXTENDING THE MODEL FOR
STRONGLY-BANDED PIGEON BEHAVIOR

Palya (1992) showed that pigeons have a
strong banding in their IRT distribution. This
is a quite different temporal structure for
responses than that seen for the rats’ nose
pokes or lever presses studied in Shull et al.’s
(2001) experiments. The left panel in Figure 9
shows the IRT population for Pigeon 694 from
Bowers et al. (2003, 2008) when responding
on a VI 60-s schedule plotted in the dot plot
form developed by Palya. For this particular
pigeon, there is a clearly visible band centered
at an IRT value of 0.1 s (often colloquially
labeled a ‘‘nibble”” band). The pigeon’s main
band peaks at an IRT value of 0.3 s. Very weak
double and triple period bands are discernible
with centers of approximately 0.75 s and 1.0 s.
Other pigeons in the study have similar
banding structures, though the main band’s
precise period as well as relative strengths of
the nibble and double and triple period bands
are distinctive characteristics unique to each
individual. For the current undertaking of
extending Shull et al.’s model into strongly
banded behavior, a qualitative understanding
of the temporal structure is sufficient. Readers
interested in more quantitative properties of
banded behavior should study original articles
by Palya and coworkers (Palya, 1992; Bowers et
al., 2003, 2008).

The right panel in Figure 9 shows Pigeon
694’s IRT histogram plotted in semilog
coordinates. The histogram is formed by
sweeping all IRTs spread along the left panel’s
time-in-interval axis into a set of equal-width
bins and recording their number. The dot
plot’s bands appear in the histogram as local
maxima. The histogram also has a clear
exponential decay for the IRT values longer
than about 1.3 s. As noted at the outset of
the analytic development, cf. Equation 1, an
IRT distribution that limits to an exponen-
tial decay for long IRT values is the indicative
of a uniform-in-time random visit-initiation
process.

ROBERT KESSEL and ROBERT L. LUCKE

There are important differences between
the Bowers et al. (2003, 2008) data and Shull
etal.’s (2001) results. The foremost difference,
provided that the exponential decay is the visit-
initiation IRT population, is that the time scale
difference compared to the within-bout IRT
population is significantly smaller than for the
rat behavior observed by Shull et al. If such a
smaller time scale difference had obtained for
Shull et al.’s rats, it would produce something
akin to the 7, = 2.0 case shown in the top
panels of Figures 3 and 4. Further, if the
pigeons’ behavior were exactly analogous to
the rats, save for their high-rate within-bout
responding being banded, then the visit-
initiation population would extend across the
entire histogram. Graphically, this would mean
that banded behavior in Figure 9 would rest
on top of a background visitinitiation re-
sponse population. The dashed curve (labeled
“‘exact analog’’) extending from the exponen-
tial fit above the obtained IRT histogram is the
form expected if the pigeon’s visit-initiation
process were an exact analog to the one that
governs Shull et al.’s observations with rats.

There are at least two ways to treat the
differences between the Bowers et al. (2003,
2008) observations and the original Shull et al.
(2001) observations while retaining the basic
character of Shull et al.’s model. The first
approach is to introduce a minimum time
cutoff specific to the visit-initiation IRT distri-
bution; in essence, to model the visit-initiation
responding as having a unique refractory
period that is longer than most if not all of
the within-bout responding. This differs from
the refractory modeling for the rat behavior
where the common ¢ cuts off the short end of
both the visitinitiation IRTs in Equation 31
and the within-bout IRTs in Equation 31. The
histogram panel in Figure 9 shows a possible
refractory cut-off to the visit-initiation IRT
distribution with the dashed curve (labeled
“cut-off’’) that falls quickly for IRT values less
than 1.1 s. To some extent the use of a
refractory cut-off is the same approach as
existed prior to Shull et al.’s 2001 article —
one splits the IRT population at a fixed time
and assigns all shorter IRTs to within-bout
behavior and all longer IRTs to visit-initiation
behavior. That subset of Bowers et al.’s data
shown in Figure 9 suggests that such a split is
possible for some pigeons. Functionally, a
refractory cut-off means that once Pigeon 694
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Fig. 9. Dot plot for Pigeon 694’s IRT population during E48 at JSU (left panel). IRT histogram from the same data
set (right panel). The dotted line is a decaying exponential fit in semilog coordinates to the histogram values over the
range 1.3 to 2.65 s. The dashed curve extending from the exponential fit above the obtained IRT histogram is the form
expected if the pigeon’s visit-initiation process has no refractory cut-off. The dashed curve falling away quickly fromthe
exponential fit beneath the data shows a visit-initiation process with a refractory cut-off of 1.3 s.

disengages from a response bout, the shortest using this approach. Appendix C describes the
visit-initiation IRT on this schedule is longer details for a Monte Carlo simulation that closely
than at least a couple of multiples of the main  parallels the one already developed from
band period. For some of Bowers et al.’s other Equations 1, 2, and 6. The major difference
pigeons, the IRT distribution extends to values between the two Monte Carlo simulations is the
longer than the 3 s of Figure 9 and has a substitution of a new pair of probability density
significantly shallower slope in semi-log coor- functions appropriate to the pigeon’s within-
dinates. For these pigeons one could justifiably bout and visitdinitiation responding. These
treat the entire banded region plus the initial ~substitutions do preclude simple closed-form
steeper exponential decay as the high rate expression like Equations A-1 and A-2 for the
within-bout responding and recover a compli- cumulative probabilities. This is a minor matter
cated analog to the rats’ behavior. It appears as numerical remapping can provide the
that pigeons can generate behavior that agrees  equivalent function.
with either of these two explanations as well as Reasonable pairs of IRT probability
an extensive set of intermediate cases depend- density functions, analogs for Equations 1
ing on the specific bird and schedule param- and 2, for Pigeon 694’s visit-initiation and
eters in effect. For a full consideration of the within-bout responding are suggested by the
pigeons’ behavior, see the article by Bowers, IRT histogram replotted in Figure 10’s top
Hill, and Palya (2008). panel. These analogs have more intricate
While both explanations are reasonable, we forms than is required for the rats and the
will focus on use of a refractory cutoff in the within-bout responding will be defined by a
visit-initiation IRT distribution. It will turn out numerical table. It is also important to note
that most of the intermediate behaviors seen by that the pigeon IRT probability density func-
Bowers et al. (2008) can be readily understood tions provide something a bit closer to an
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IRT histogram for Pigeon 694 during E48 at JSU (top panel). The heavy dotted line is a decaying

exponential fit in semilog coordinates to the histogram values over the range 1.3 to 2.65 s. The light dotted curve that
coincides with the complete decaying exponential fit and falls away at about 1.1 s is a cut-off visit-initiation model that will
reasonably match the data. The light dotted curve that falls away at about 1.7 s is a second cut-off visit-initiation model
that generates an intermediate case. Normalized visit-initiation p,(¢) models with #.,, of 1.075 s and 1.75 s, m,, = 25, and
7 = 0.394 s (middlepanel). Also shown in the middle panel as a dotted line is the normalized visit initiation density given
by Equation 1 for 7, = 0.394 s. A normalized strongly banded within-bout p,(f) model for Pigeon 694 is shown in the

bottom panel.

illustration, rather than the rigorous result
obtained above for the rats’ behavior. The
pigeons’ behavior is sufficiently more complex
that to include a complete description at the
outset would obscure how a modified form
of the Shull et al.’s (2001) model operates.
With these provisos in mind, we will first
attend to the visit-initiation probability density
function.

As noted above, the transition in IRT
distribution from banded to an exponential
decay near 1.3 s can be treated as a boundary
between visit-initiation and within-bout re-
sponding. As a model for a somewhat soft
boundary, we will use the hyperbolic tangent
to generate a refractory cut-off for the visit-
initiation responding as

cut_off(t) = %[tanh[mcut(t - lcut)] + 1}5 (40)

where mc,, is the cut-off slope and ., is the
refractory cut-off time. Equation 40 is merely a
convenient form that changes smoothly from 0
to 1 with half-way point centered at ... Within
Equation 40, {., plays exactly the same role as
0 plays Equation 33. Considerable further
experimental study will likely be required
before a model for the short portion of
pigeons’ visit-initiation IRT distribution gains
general acceptance. The long IRT portion of
the distribution, on the other hand, clearly
remains a simple exponential decay, as was
seen in Shull et al.’s (2001) rats. Hence, a
reasonable overall visit-initiation IRT distribu-
tion takes the form

1
Ppolt) = iz ltanhmen (¢ — t)] + 1]
2N (a1)
— X e_f’/'rv7
Ty
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where N is a normalization constant. Equa-
tion 41 is the pigeon analog to Equation 1 for
the rats. The middle panel of Figure 10 shows
two examples of Equation 41 — one with the
cutoff placed just beyond the banded behavior
and one with cutoff well separated from the
banded behavior.

As noted (Bowers et al. 2003, 2008; Palya,
1992), while the bands of the within-bout
behavior have features common to most
pigeons, their timing and relative strength
are unique to the individual. Furthermore, a
closed form expression for the within-bout IRT
probability density function is not currently
available. However, one can always subtract off
Equation 41 and treat the remaining popula-
tion as a numerical estimate of the within-bout
probability density function. The bottom
panel of Figure 10 shows such a p,(¢) estimate
for Pigeon 694 after it has been normalized to
J p(t) = 1. Like the use of Equation 40 as a
factor in p,(?), this estimate for the within-bout
probability density function will likely be
superseded with further experimental work.
For the present though, a numerical estimate
is adequate for coding a Monte Carlo simula-
tion. One does have to assert an additional
property for the pigeons’ p,(¢) that parallels a
property seen with the rats: its form remains
fixed independent of both the visitinitiation
probability density function p,(f) and the
disengagement probability p,.

Figure 11 shows the Monte Carlo’s IRT
output sorted into both a semilog IRT
histogram and the equivalent survivor-fraction
assuming five different visit-initiation patterns.
The within-bout behavior is the same for all
examples: the p,() abstracted from Pigeon
694’s banded behavior shown in the bottom
panel of Figure 10. All five Monte Carlo runs
used 250,000 simulation cycles. The top four
cases all have p, = 0.2, while the fifth row used
pa = 0.6. The top row’s pair of plots result
from a cutoff p,(f) estimated for Pigeon 694
with t.y = 1.075 s, me = 25, and 7, = 0.394 s.
Since this parameter set comes directly from
the Pigeon 694 data, not surprisingly, the
Monte Carlo generated IRT histogram agrees
closely with that from the actual data. The
corresponding log-survivor plot has a some-
what stair step appearance with inflection
points tied to the strong band edges for IRT
values below i, and the relatively straight
decay for longer IRT values. Since Pigeon
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694’s within-bout and visit-initiation behavior
have relatively similar characteristic time
scales, the sharp demarcation present for the
rats’ log survivor plot is not apparent. Ex-
pressed quantitatively, a typical pigeon’s with-
in-bout IRT from Bowers et al.’s (2008)
experiment appears to be about 3 times faster
than a visit-initiation IRT, while Shull et al.’s
(2001) data suggests a factor of 20 is typical for
the behavior of rats under the conditions
studied. The second row’s pair of plots
illustrates the effect of completely separating
the visit-initiation responding from the within-
bout responding by increasing fc, to 1.75s
(shown as the right-most p,(¢) in the middle
panel of Figure 10). The result is a prominent
split in the IRT histogram (left-hand plot) and
a corresponding completely flat section in the
log survivor plot (right-hand plot). Such a
separation has been seen by Bowers et al.
(2003, 2008) on relative rich schedules. On
their richest schedules the experimentally
measured separation appears to be two or
three times that shown in Figure 11’s second
row. The third and fourth rows in Figure 11
show the result of switching from Equation 41
back to Equation 1 for p,(?) while keeping the
strongly banded within-bout responding for
p(1). Consequently, these two cases are closer
analogs to Shull et al.’s original model for rats.

It is important to understand how features
that appear in the 50,000 cycle simulation log
survivor plot in Figure 6 (or Shull et al’s
(2001) original plots) are tied to those in the
bottom two rows of Figure 11. Itis easier to see
the connections by working in from the right,
or longer IRT, side of the plots. The longest
IRT population is due to visit initiations and is
a straight line in all cases. The first concave
upward rise (at about 1 s) from the right is the
transition to contributions from the within-
bout responding. For the third and fourth
rows of Figure 11 this transition is at 1 s. The
transition is also at 1 s in Figure 6, though it is
a little difficult to see given the larger range of
the axis. Once the transition occurs, the
differences in the within-bout responding
become important. The rats’ log-survivor plots
have a simple near-linear rise below the curved
transition region. This inner near-linear rise is
primarily the within-bout response population
with just a small contribution from the very
shortest of the visit-initiation IRTs. Since the
rats’ within-bout responding is distributed
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histograms in semilog coordinates and log survivor plots from five Monte Carlo simulations all using a

250,000 cycle run length. All cases use Pigeon 694’s banded behavior shown in the bottom panel of Figure 10. The top
pair of plots use cut-off visit initiation with te,, = 1.075 s, mey = 25, and 7, = 0.394 s. The second row plots use cut-off visit
initiation with f, = 1.75 s, ey = 25, and 1, = 0.394 s. The third, fourth, and fifth rows plots use Shull et al.’s (2001)
expression for visit initiation, (1/t,)e” "% with: 7, = 0.394 s (third row), 7, = 0.789 s (fourth row), and 7, = 0.789 s as

well as increasing p, to 0.6 (fifth row).

uniformly in time (i.e. IRTs follow Equa-
tion 2), the associated section of the log
survivor plot is a smooth rise. The pigeons’
log survivor plot, in contrast, has a series of
ripples caused by the band edges. Further, the
time scale difference between the visit-initia-

tion and within-bout responding is much
smaller for the strongly-banded pigeon behav-
ior than the uniformly-in-time-distributed rat
behavior. Consequently, the single concave
upwards change in slope in Figure 6 is
comparatively much closer to the left edge of
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the plot. The fourth row results from doubling
7, to 0.789 s. The larger 7, redistributes the
visit-initiation population to greater IRT values
and starts to make the strongly banded log
survivor plot look more like those of the
original Shull et al. model. Clearly though,
the presence of strong banding will preclude
the resemblance from becoming exact.

The final row in Figure 11 shows the effect
of increasing to p, = 0.6 while holding t, at
0.789 s. Both the concave upwards change in
slope and the ripples from the band edges are
much less apparent in the log survivor plot.
Had the simulation’s run length been con-
strained to a few thousand cycles, rather than
the experimentally impractical 250,000 cycles
shown in Figure 11, the small ripples present
would be lost in the random fluctuations of
the histogram binning.

Traversing Figure 11 captures an abbreviat-
ed characterization of the behaviors seen in
Bowers et al’s experiments (2003, 2008).
Generally, as Bowers et al.’s birds were moved
from lean schedules to rich schedules, their
behavior shifts from larger values of p, towards
smaller values. On the leanest schedules, the
supported behavior yields relatively undiffer-
entiated log survivor plots similar to the
bottom row of Figure 11. On slightly richer
schedules, the birds first go to lower values of
pa and then shorter visit-initiation 7, distribu-
tions (e.g. fourth and third row of Figure 11
respectively). Next, the visitinitiation IRT
population begins to show a lower cutoff just
longer than the strongly-banded within-bout
behavior as shown in the first row of Figure 11.
Finally, the very richest schedules generate
visit-initiation IRT values that are significantly
separated from the strong banded within-bout
behavior (e.g. second row of Figure 11). The
type of schedule also exerts control upon IRT
distribution. The companion article by Bowers
et al. (2008) has a complete atlas of IRT plots.
As an aside, when contrasted to Shull et al.’s
(2001) data, the more complex fine structure
of the pigeons’ behavior may well be easier to
understand with the semi-log IRT histogram
than with the log-survivor plot.

SUMMARY

Constructing an analytic version of Shull et
al.’s (2001) model is useful in a variety of ways.
The model’s characteristics can be studied in
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detail and the analytic form itself can be used
for improved data analysis techniques. It also
allows one to extend the model to behavior
where the interpretation of a log-survivor plot
is a bit problematic. Independent of the
specific analytic form presented in this article,
it is important for the reader to note that the
log-survivor analysis is separate from Shull et
al.’s model. Their model, based on probabilis-
tic cycling between a high rate within-bout and
lower rate visit-initiation responding, is quite
general. The log-survivor plot, on the other
hand, is probably at its most useful for the case
of rats where 7, > 7,. In a case such as Bowers
et al’s (2003, 2008) experiments, a semilog
IRT histogram will probably be more useful.

The analytic form illuminates aspects of
Shull et al.’s (2001) model. In its original
formulation, it is built solely from a pair of
unchanging IRT distributions and the switch-
ing probability p, As such, it is an inspired
approximation for steady state behavior, rath-
er than the final answer for IRT distributions.
We expect the model to fail for behavior that
lacks continuous time symmetry (e.g. behavior
supported with short repeated trials). Addi-
tionally, the use of a time-averaged log-survivor
plot (or a semilog IRT histogram) throws away
the sequential dependencies present in Shull
et al.’s model. These sequential dependencies
will need to be included in dynamic models of
behavior. It is possible to construct conditional
statistics that are sensitive to various sequential
dependencies. One could find experimentally-
testable expressions for such conditional sta-
tistics with appropriate analogs to the calcula-
tion for Equation 15 based on Equations 1, 2,
and 6. As an example, one could compute the
expected distributions for return maps as a
function of t,, 7,, and p,.
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APPENDIX A

The nice time-sequential structure of the
Shull et al. (2001) model seen in Figure 2
makes it particularly convenient for computer
simulation. The steps of the Monte Carlo
simulation itself are a matter of iterating cycles
through Shull et al’s state diagram while
satisfying Equations 1, 2, and 6 and collecting
a simulated IRT set. Each of the steps involves
remapping of a random number uniformly
distributed between 0 and 1 to the appropriate
distribution defined by Equations 1, 2, or 6.

Assuming that the organism just started a
bout of responding, the simulation’s basic
structure follows:

1. Get number of responses in a bout.
Equation 6 gives the probability for a bout
of exactly n responses. Consequently
> ov_1pe(n) is the cumulative probability
of n or fewer responses in a bout and is
shown in Figure A-1 for p;, = 0.2 out to a
bout of 50 responses. If all values of a
uniformly-distributed pseudo-random
number u within the range of 22;11 P, n
and Y _ pn, » are mapped to a bout with
n’ responses, the number of responses in
each bout length will be distributed as
Equation 6. For an example of this map-
ping, assume that p; = 0.2 and a call to a
uniform random number routine yields u
= 0.716949. As shown in Figure A-1, this is
between 0.672320 and 0.737856 which are
the cumulative probabilities for » = 5 and
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n = 6 respectively. Hence, u = 0.716949
corresponds to a bout with six responses.
While generating the number of responses
for a bout at the outset may appear as a
slight departure from the Shull et al.’s
(2001) state diagram description in the
sense that p,; determines the probability to
end a bout after each response, it is
functionally equivalent. The combined
effect of multiple probabilistic decisions
to possibly end a bout each with probability
pa yields Equation 6.

2. Generate the within-bout IRT set. If
there are n’ responses in a bout, there
need to be »° — 1 IRTs in the bout
distributed according to Equation 2. Since
Equation 2describes a continuous mono-
tonically decreasing distribution with a
simple closed form integral, the remap-
ping process is done analytically. One
equates cumulative probabilities, [} du/
and J"JRT""‘“l e~ '/"dr, which vyields an

A Tr
analytlc eXpreSSlon

IRTpout = —7,In(1 — w). (A-1)

Equation A-1 remaps a uniformly distrib-
uted pseudorandom number w to an
IRT},0,c which satisfies Equation 2’s proba-
bility density. Continuing with the example
of the first step where an initial random
number call of v = 0.716949 mapped to a
bout of six responses, will require five IRT
values. If five calls to uniform random
number routine yield the set of values
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Fig. A-l. >0 py, ufor p; = 0.2. Also shown is the remapping from u = 0.716949 to six responses.

{0.698975, 0.476577, 0.562559, 0.268977,
0.169790} and 7, = 0.50 then the associated
IRThoye values from Equation A-1 are
{0.60028160, 0.32368273, 0.41340727,
0.15665530, 0.093038388}.

3. Generate the visit-initiation IRT. Since the
visit-initiation IRT distribution’s form is
also an exponential (Equation 1), it can be
handled in the same way as the within-bout
distribution. The visit-initiation analog to
Equation A-1 is

IRTViSil = —rvln(l — ’LL) (A—Q)
Completing the example in use for this
cycle of the simulation, if the next random
number call returns v = 0.504665 and 7, =
10.0, the associated IRT,;, value is
7.0252186.

The simulation then returns to Step 1 and is
iterated until an IRT population for some
predetermined number of cycles has been
generated. In addition to generating the IRT
population, the simulation also collects the
IRTs into histogram bins and logs the actual
numbers of within-bout and visitdinitiation
IRTs.

APPENDIX B: PARTIAL DERIVATIVES WITH
RESPECT TO MODEL PARAMETERS

The Levenberg-Marquardt algorithm uses
the partial derivatives of the function to be
fit with respect to each of the adjustable
parameters. For completeness, the partial
derivatives used for this article’s fits follow
below.

The partials of Equation 17 are:

0 PRt (41,005 T, Trspa)
01,

(B-1)
p_;i[tle_tl/fzr _ t28_t2/r":|,
0 Pirr (b1, Ty Trspa) _
01,
. (B-2)
T% d [tlp—fl/r te—tg/‘r,]’
and
OPRT (1,895 Ty, Trspa) _
0 pa (B-3)
I:ef[]/‘fv _ eftg/‘fl,} _ [37[1/1' _ e*tg/‘h].
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The partials of Equation 19 are 0 PR (41,805 TusTrspas0)
O survirT (¢ Ty, Trspa) _ ba Y, (B4) 13l
01, ‘52 0 t,lo < 0
I P e (L)
e
0surV1RT(t; ‘L'v,‘L',-,[}d) _ 1 — Pa e_t/r’ (B—5) {pd Ty
01, ‘Ef + (1 _ pd)e*(l‘z *‘5>/Tr(%)} h <0<t
and _ {6411 — 9/ (l)
O survirT (t; Ty, Tropa) - o (B-10)
0 pa (B—6) _ (=0 (TL)}
_ eft/r‘, _ eft/'c,’ ~
+ (1= pa)eto -9 (2)
The partials of Equation 36 are )
0 PR (11,895 Ty, s pa,0) — e (fl)} 0 < oty
0ty
0 h,lg <90 0 li,lg <0
_pd e*(t‘z — 0)/71;( — ‘5) 4y < o< lo (B—7> — { <[T]—j) 6_(t2 — 9/t
= , a=p)\, (o — 5)/1,}
o) PE)e) s
= b —(t = 9)/t . (B-11
o (iz9)] s () [ 51y
e (t) — 0 /‘C,]
6PIRT(t17t2; Tvafr,jbdaé) + ( 1 — [)/] )
oty e~ 70/1, — e =] 5 < g
0 l,l < 0

(1 = pa)e—tt— 9 ( _ 5) p e <1 And finally the partials for Equation 38 are
— Pd "\ 1 2

2
K OSurviRT (41,82; To»Trspas0)

) =) [ﬂh - WT"(“; 6) (B-8) o1,
' 0 )
S ] 6 < by = (5) s< 0 (BT
0 Prr (11,895 TusTrspas9) O survirt (1,05 T, Tropasd)
Opa 01, N
0 tto < & 0 t <6
o (1= , (B-13
[1— ¢ (&= 9)/n] (1 = pa)e =9/ '(’T?‘S) s<it )
- —[1 = e 9/m] n<o<t, O SurviRt (61,153 ToTropid)
[0 = D/% _ o= 9)/x) (B-9) 2 ba =
_ [e*(‘l ~ )/t _ gt ,5)/17] 5 < by 0 ) (B-14)

e (1=/te _ (=), § < ¢’

and and
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Fig. C-1. The cumulative probability from evaluating Equation C-1 for all IRT},q.
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APPENDIX C: STRONG BANDING PIGEON
MONTE CARLO

The pigeon Monte Carlo has nearly an
identical structure to the one developed
earlier for the rats. To ease the comparisons,
we will again use p; = 0.2 and repeat the same
example set of uniformly distributed pseudo-
random numbers that were used to explain the
rat Monte Carlo. The steps in the pigeon
Monte Carlo are:

1. Get number of responses in a bout. The
first step is exactly the same as for the rat
Monte Carlo simulation. Equation 6 gives
the probability for a bout of exactly n

responses and Figure A-1’s technique still
applies. Assuming that a call to uniform
random number routine again yields u =
0.716949, a p, of 0.2 maps to a bout of six
responses.

Generate the within-bout IRT set. As
before if there are n’ responses in a bout,
there need to be n' — 1 IRTs in the bout.
However, unlike the rats’ behavior, the
pigeons’ within-bout strongly-banded be-
havior is not easily describable by a closed
form expression. Rather, for Pigeon 694,
its strongly-banded IRT distribution is
given by the numerical estimate shown
plotted in the bottom panel of Figure 10.
To remap a uniformly distributed pseudo-
random number u to a bout IRT requires
equating the cumulative probability as

IR Thou

u(IRThout) = J p(l)dl,  (C-1)

0

where p,(¢') is taken from the bottom
panel of Figure 10. Figure C-1 shows the
cumulative probability from evaluating
Equation C-1 for all IRT},,. For reasons
of computational speed, Equation C-1 is
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repeatedly evaluated ahead of time at a
closely spaced set of IRT},,,, values to yield
a table of cumulative probabilities. During
a Monte Carlo simulation run itself, this
table of cumulative probabilities is inter-
polated for a given value of w. If five calls to
uniform random number routine yield the
set of values {0.698975, 0.476577, 0.562559,
0.268977, 0.169790}, then the correspond-
ing IRT},,,, values are {0.674384, 0.313313,
0.394776, 0.243797, 0.215848}. These val-
ues put the first IRT in Pigeon 694’s
double period band and the remaining
four IRTs in the main band.

Generate the visit IRT. The pigeons’ visit-
initiation distribution is given by Equa-
tion 41. To convert a uniformly distributed
pseudorandom number u to a IRT ;;, value
is again done by equating the cumulative
probability, which now takes the form

IRTvisn 1
= —— [tanh — +1
w= | g ltahlmea (= ] + 1

1 —U /Ty g4
The remapping of u to IRTy, is again
most efficiently done by interpolating
a precomputed table of closely spaced
evaluations of the integral. Assuming
the Monte Carlo’s next random num-
ber call returns u = 0.504665 and that
lewe = 1.075's, meye = 25, and 7, =
0.394459 s the associated IRT,;;, value is
1.3505170.

As with the first Monte Carlo, the routine
returns to Step 1 and the steps are iterated
until an IRT population is accumulated for a
fixed number of simulation cycles.



